### DFT 法を用いた化学シフトの概要

DFT 法による化学シフト計算の精度は如何ほどのものでしょうか?

#### 量子化学に基づく化学シフトについて

化学シフトを予想する方法には複数あります。通常は、研究者の経験に基づいて解析します。オレフィンの <sup>1</sup>H 化学シフトなどでは、一定の加成性が成り立つため予想する式もあります。最近はデータベースを活用した化学シフト予想プログラムも作られ、ChemDraw などに導入されています。構造式を入力することで 化学シフトを予想する WEB サイトもあります。

(https://www.nmrdb.org/new\_predictor/index.shtml?v=v2.121.0)



化学シフトは、それぞれの磁気遮蔽率と密接に関係しており、量子力学的に磁気遮蔽率を求めれば原 理的には化学シフトを予想することが出来ます。最近見かける Gauge-Independent Atomic Orbital (GIAO)法もその一つです。シュレーディンガー方程式を近似的に解く Hartree-Fock 法は、2000 年ごろま で主流でしたが、構造的な欠陥も見つかるなど最近はあまり使用されなくなってきました。Møller-Plesset (MP)法や結合クラスター(CC)法といったより精度の高い手法も開発されましたが、計算の コストが高いためかあまり用いられていません。近年は密度汎関数(DFT)法がもっぱら利用されていま す。密度汎関数法の歴史は 50 年以上ありますが、当初は精度が低くあまり注目されませんでした。DFT 法では Hartree-Fock 法にくらべ、計算コストが低いことから汎関数の改良がおこなわれ、非常に予測性の 高いものになってきました。

密度汎関数法には、解を求める正しい理論というものがありません。実験値を再現するように様々な仮 説をもとに関数を組み合わせて作られており、これが多数の汎関数が存在する理由です。つまり、汎関数 開発時における参照分子の類縁体以外では、予想は外挿であることを認識しなければなりません。汎関数 には、分子の特性や求める物性に対して得手不得手があるということです。

### 量子計算に基づく化学シフト計算の精度

用いる手法の計算精度を確認する必要があります。以下は、C. Ochsenfeld によって紹介されている計算手法と計算精度の関係です <sup>1</sup>。 論文では <sup>1</sup>H 化学シフトについても議論されていましたが、帰属の問題

など複雑な点があるので、ここでは <sup>13</sup>C 化学シフトのみで議論します。テーブルでは standard deviation (STD, 標準偏差)で議論しています。B3LYP や mPW1PW といった汎関数が良く用いられます。6-31G\*\* や、6-311G\*\*といった基底関数が標準的と思われますが、その精度は 3-4 ppm といった精度です。言い換 えれば計算値との差異が 2 ppm となると、単純には議論できないということになります。表では CCSD(T) や MP2 といった手法では計算精度が高い傾向が見られますが、これらは DFT 法と比較して、極めて重い 計算になります。分子量が大きくなるとその傾向はさらに強くなり、天然物の様に 500 を分子量の化合物を 計算するには、ワークステーションレベルではとても太刀打ちできる計算ではないといえます。

Table 2. Standard Deviation (STD) of C Shifts for Different Basis Sets and Methods with Respect to the Reference Calculation CCSD(T)/cc-pVQZ

| basis set | ${\overline{N}_{\mathrm{bas}}}^a$ | CCSD(T) | $CCSD(T)^b$ | MP2  | $MP2^{b}$ | HF   | PBE0 | mPW1PW | B97-2 | B3LYP | B3PW91 | mPW3PW | KT2  | PBE  | BP86 |
|-----------|-----------------------------------|---------|-------------|------|-----------|------|------|--------|-------|-------|--------|--------|------|------|------|
| STO-3G    | 3.0                               | 25.8    | 8.6         | 27.0 | 9.9       | 16.5 | 20.3 | 20.4   | 21.1  | 21.0  | 20.8   | 20.7   | 23.6 | 22.2 | 22.4 |
| 3-21G     | 5.4                               | 11.9    | 4.4         | 13.0 | 6.4       | 7.4  | 7.6  | 7.5    | 8.6   | 8.2   | 7.9    | 7.9    | 12.4 | 10.0 | 10.1 |
| 6-31G**   | 9.8                               | 7.2     | 2.2         | 7.5  | 2.7       | 5.5  | 3.3  | 3.4    | 4.4   | 4.5   | 3.8    | 3.8    | 8.6  | 5.9  | 6.2  |
| 6-311G**  | 11.9                              | 3.5     | 1.8         | 3.9  | 2.9       | 8.2  | 3.4  | 3.3    | 2.5   | 3.5   | 3.3    | 3.4    | 4.9  | 3.7  | 3.7  |
| pcS-0     | 5.4                               | 8.1     | 6.8         | 6.7  | 9.4       | 19.2 | 11.2 | 11.1   | 9.8   | 10.4  | 10.7   | 10.8   | 7.3  | 9.6  | 9.4  |
| pcS-1     | 10.8                              | 2.0     | 1.4         | 2.5  | 2.6       | 9.0  | 4.6  | 4.5    | 3.2   | 4.7   | 4.4    | 4.5    | 4.2  | 4.5  | 4.3  |
| pcS-2     | 23.2                              | 1.0     | 0.5         | 2.5  | 2.2       | 9.4  | 6.2  | 6.2    | 4.5   | 6.4   | 6.1    | 6.2    | 4.1  | 6.0  | 5.8  |
| def2-SVP  | 9.4                               | 5.7     | 2.8         | 6.3  | 3.4       | 5.5  | 3.5  | 3.6    | 4.2   | 4.4   | 4.0    | 4.0    | 7.7  | 5.7  | 5.9  |
| def2-TZVP | 17.9                              | 1.0     | 0.4         | 2.4  | 2.2       | 7.8  | 4.2  | 4.1    | 3.2   | 4.4   | 4.1    | 4.3    | 5.2  | 4.8  | 4.7  |
| tz2p      | 16.3                              | 1.7     | 0.8         | 2.6  | 2.2       | 8.1  | 3.9  | 3.8    | 2.7   | 4.0   | 3.7    | 3.9    | 4.6  | 4.2  | 4.1  |
| qz2p      | 18.7                              | 0.7     | 0.8         | 2.1  | 2.3       | 8.7  | 4.9  | 4.9    | 3.4   | 5.2   | 4.8    | 5.0    | 4.2  | 4.9  | 4.8  |
| cc-pVDZ   | 9.4                               | 6.0     | 2.9         | 6.7  | 3.5       | 5.7  | 3.8  | 3.8    | 4.4   | 4.6   | 4.1    | 4.2    | 7.6  | 5.8  | 6.0  |
| cc-pVTZ   | 21.6                              | 1.5     | 0.5         | 2.5  | 2.1       | 7.5  | 3.8  | 3.7    | 2.8   | 4.1   | 3.7    | 3.8    | 5.2  | 4.5  | 4.4  |
| cc-pVQZ   | 41.8                              | 0.0     | 0.0         | 2.1  | 2.1       | 8.3  | 5.0  | 5.0    | 3.5   | 5.2   | 4.9    | 5.1    | 4.5  | 5.2  | 5.1  |

<sup>a</sup>Average number of basis functions per atom (determined for the molecular benchmark set). <sup>b</sup>The HF part of the C shifts is calculated with the basis set cc-pVQZ (see Section 5 for a detailed discussion).

もう一つ、私たちが認識しなければいけないのは、上記表の作成に当たり対象とした分子群です。同 論文では、下に示した非常に簡単な分子を用いて上記表を作成しています。表の作成に必要な計算は膨 大であることは理解できますが、表中の化合物でしたら、多少の経験があれば、その帰属を間違えること がない分子ばかりです。



Figure 1. Molecular benchmark set of the current study: (a) Original molecular structures of ref 30. (b) Additional molecular structures of the present work.

最近は、DFT法が計算手法として席巻していますが、DFT法にはハートリーフォック法といった分子軌道法とは異なり、正しい解き方というものは存在せず、実験値を再現するように作成されています。これが、

数多くの汎関数が存在する理由です。作成時に想定していない分子群や、物性はまさに、"外挿法"的で、 どこまで信用できるか検証しなければ、その議論には不安がぬぐえないことになります。

#### Spartan'18, Spartan'20 における化学シフト計算<sup>2</sup>

Hehre 博士は、天然物分野における利用を視点に、

- 計算精度の向上
- ② 配座自由度の高い分子への応用
- ③ 計算結果の評価プロセスのオンプログラム化

を行いました。

① まず、汎関数にωB97X-D を選択し、分子内に様々な環境の炭素を有するストリキニーネを参照分子として複数の基底関数で化学シフトを計算したところ、基底関数の精度を高くしても計算精度は高くならないという結果を得ました。計算コストの低い 6-31G\*を使用することにしました。

Table 1.  $^{13}$ C NMR Chemical Shifts for Selected Carbons in Strychnine from  $\omega$ B97X-D Density Functional Calculations with Different Basis Sets



strychnine

|          |                                 | ~      |         | uncorre | cted     |               | empirically collected |                                 |
|----------|---------------------------------|--------|---------|---------|----------|---------------|-----------------------|---------------------------------|
| position | atom type                       | 6-31G* | 6-31G** | 6-311G* | 6-311G** | 6-311G(2d,2p) | 6-31G*                | experimental in $\text{CDCl}_3$ |
| C-23     | sp <sup>3</sup> oxymethylene    | 62.9   | 63.5    | 65.7    | 66.7     | 66.1          | 65.0                  | 64.4                            |
| C-12     | sp <sup>3</sup> oxymethine      | 75.6   | 76.7    | 80.1    | 80.7     | 80.1          | 78.1                  | 77.3                            |
| C-17     | sp <sup>3</sup> methylene       | 43.0   | 43.5    | 45.4    | 46.0     | 45.2          | 42.9                  | 42.6                            |
| C-14     | sp <sup>3</sup> allylic methine | 32.8   | 33.9    | 35.5    | 35.9     | 35.4          | 32.3                  | 31.4                            |
| C-7      | sp <sup>3</sup> quaternary      | 52.2   | 53.7    | 55.8    | 55.9     | 55.3          | 52.4                  | 51.7                            |
| C-22     | sp <sup>2</sup> methine         | 124.9  | 125.8   | 133.9   | 134.4    | 133.6         | 128.3                 | 127.3                           |
| C-21     | sp <sup>2</sup> quaternary      | 138.4  | 140.4   | 151.1   | 151.6    | 150.8         | 141.8                 | 140.0                           |
| C-6      | sp <sup>2</sup> aromatic        | 126.7  | 128.7   | 137.7   | 138.0    | 137.3         | 131.1                 | 132.4                           |
| C-10     | sp <sup>2</sup> carbonyl        | 161.8  | 163.4   | 171.9   | 172.0    | 172.6         | 170.1                 | 169.0                           |
| rms (who | le molecule)                    | 3.3    | 2.6     | 5.3     | 5.7      | 5.2           | 1.0                   |                                 |

次に配座異性体の存在しない 24 個の天然物の 370 個 の炭素について計算したところ、0-100 ppm のいわゆる sp<sup>3</sup>炭素については申し分のない再現性をもたらすのに対 し、100 ppm 以上の sp<sup>2</sup>, sp 炭素には一定の誤差が生じ ることが判明、これは計算法に由来するものととらえ、配 座の問題が少ない 2000 の天然物の 13000 の炭素の化 学シフトの計算値と実測値との差異を基に、結合長や結 合角など 5 つパラメータで補正したところ、1.5 ppm の精 度で計算できることが判明しました。



Figure 1. Plots of  $\omega$ B97X-D/6-31G\* <sup>13</sup>C NMR chemical shifts vs experimental values of 24 rigid or nearly rigid natural products from *Classics in Spectroscopy* by Berger and Sicker.<sup>11</sup> Plot A: Comparison with the chemical shifts directly obtained from density functional calculations. Plot B: Comparison with the chemical shifts after empirical correction. 天然物の大きな特徴に配座自由度があります。NMR の化学シフトは安定配座それぞれの化学シフトを 配座のボルツマン分布で平均化した値になります。しかし、安定配座間のエネルギー差を求めることは困 難です。そこで n-pentane, 1,4-butandiol, melatonin といった比較的簡単な分子について、結合クラスター 法で計算し、そのエネルギー差を再現する組み合わせを探索したところ、ωB97X-V/6-311+G(2d,2p)[6-311G\*]が最も高い再現性を示すことが判りました。6-311+G(2d,2p)[6-311G\*]はデュアル基底関数といっ て、レベルの高い基底関数を高速で計算できるというものです。高速とは言え、6-31G\*と比較するとずっと 高コストな計算の為、ωB97X-D/6-31G\*で得られた構造をそのままωB97X-V/6-311+G(2d,2p)[6-311G\*]で 求める手法を採用しました。一般にはダブルスラッシュでつないだωB97X-D/6-31G\*//ωB97X-V/6-311+G(2d,2p)[6-311G\*]と表現します。

次に最適化を行ったのが配座探索法です。Spartan では早くより配座探索を導入しており、長い実績が あります。そのノウハウを生かした手法を導入しました。天然物の様に配座自由度が高い分子では可能な 配座が数万になることも珍しくありません。従って初めから高いレベルで計算すると非現実的な時間が必要 になってしまいます。そこで高速な分子力学法(MMFF force field)を用いて広範囲に探索し、徐々に計算レ ベルを高くしながら、配座数を絞り込むという手法を導入しました。また、配座探索におけるアルゴリズムも 改良して、効率的な配座探索を可能にしました。



Spartan'18 から、一連の配座探索-化学シフト計算-経験的補正-統計解析をすべて自動化して、計算の 経験が少ない方でも、実行できるプロトコルを導入しました。

この手法を、925 の配座自由度の高い天然物で検証しました。まずエックス線結晶解析や全合成によっ て、その構造に間違いがない天然物について計算し、その誤差はほぼ 2.0 ppm 以下であり、ほぼすべて が 3.5 ppm の誤差に入ることが判りました(青のヒストグラム)。中には誤差が大きいものもありましたが、 多くの場合、帰属ミスといったものでしたが、一例だけ、提出されている構造のすべての窒素原子を酸素原 子で置き換えた方が一致度が高くなるといったケースがありました。



**Figure 2.** Distribution of rms errors for natural products for which a crystal structure is available or that have been independently synthesized (blue bars), and for natural products the structures have yet to be confirmed with a crystal structure or synthesis (red bars).



Figure 3. Problematic examples showing large deviations between calculated and experimental <sup>13</sup>C NMR chemical shifts among the natural products structurally established by X-ray crystallography or independent synthesis.

次に、エックス線結晶解析や全合成といった検証がなされていない、NMR 解析などを中心に構造が決 定された天然物 2150 を検証したところ、全合成などにより構造が確実な天然物の時とほぼ同様な誤差で あることが判りました(赤のヒストグラム)。中には誤差が 5 ppm 以上のものが見られましたが、その多くで は、記載ミス、帰属ミス、さらに構造が間違っていることが判りました。結晶しない化合物は一般に配座自由 度が高いため、配座分布の再現性が原因かもしれません。また重クロロホルム以外の溶媒では誤差が大 きくばらける傾向があることも判明しました。



Figure 4. Examples of natural products showing large deviations between calculated and experimental <sup>13</sup>C NMR chemical shifts. We suggest that these are due to incorrect structural assignments.

### Spartan'20 で追加された機能

この手法は極めて再現性が高いものですが、異性体間で化学シフトが微妙に異なる場合以外ではオー バースペック的なところもありました。Spartan'20 では計算コストの大きいのB97X-V/6-311+G(2d,2p)[6-311G\*]によるエネルギー計算を、コストの低い HF/321G に置き換えた複数のプロトコルも利用可能にしま した。また Goodman の提案した DP4 オリジナルレシピも導入されました。 Spartan'20 では以下の 5 つの NMR 計算プロトコルが組み込まれています。NMR 化学シフトは、太文字の構造をもとに求めています。

|         | B97X-D/6-31G* full<br>(従来法)        | Goodman recipe  | ωB97X-D energy | B3LYP full                        | B3LYP energy    |
|---------|------------------------------------|-----------------|----------------|-----------------------------------|-----------------|
| 配座解析    | MMFF                               | MMFF            | MMFF           | MMFF                              | MMFF            |
| 構造最適化①  | HF-321G                            | -               | HF-321G        | HF-321G                           | HF-321G         |
| エネルギー①  | ωB97X-D/6-31G*                     | B3LYP-D3/6-31G* | -              | B3LYP-D3/6-31G*                   | B3LYP-D3/6-31G* |
| 構造最適化②  | ωB97X-D/6-31G*                     | -               | -              | B3LYP /6-31G*                     |                 |
| エネルギー②  | ωB97M-V/6-311<br>(2df,2p)[6-311G*] | _               | ωB97X-D/6-31G* | B97M-V/6-311<br>(2df,2p)[6-311G*] |                 |
| 化学シフト計算 | ωB97X-D/6-31G*                     | ωB3LYP /6-31G*  | ωB97X-D/6-31G* | B3LYP/6-31G*                      | B3LYP/6-31G*    |

Spartan'20に組み込まれたプロトコルをCAF-603と可能な8異性体を計算し比較してみました。

| =       | プロトコル                   | 対象異性体の<br>RMSD (ppm) | 対象異性体の<br>Max dev (ppm) | 対象異性体の<br>DP4 (8 異性体中) | 対象異性体の<br>最終配座数 | 所要時間<br>(対象異性体) |
|---------|-------------------------|----------------------|-------------------------|------------------------|-----------------|-----------------|
| нош     | B97X-D/6-31G* full(従来法) | 1.2                  | 2.8                     | 100                    | 12              | 18 時間           |
| НОШТ    | Goodman recipe          | 1.6                  | 3.7                     | 100                    | 39              | 17 時間           |
| CAE 603 | ωB97X-D energy          | 2.3                  | 4.2                     | 99.6                   | 13              | 4 時間 30 分       |
| CAP-005 | B3LYP full              | 1.9                  | 3.9                     | 99.8                   | 17              | 9 時間 30 分       |
|         | B3LYP energy            | 2.4                  | 4.8                     | 99.3                   | 10              | 4 時間 10 分       |

CAF603 の場合、配座自由度が高く、MMFF のレベルで認識される安定配座数が多いため、Goodman レシピでは計算時間の短縮になっていないことが判ります。この化合物の場合、どのプロトコルを利用しても、正しい構造が排他的に選択可能であることが判ります。

Goodman recipe では、結構乱暴な計算をしているにもかかわらず、化学シフトの高い再現性を示しました。 プロトコル B3LYP full も高い再現性で化学シフトを予想しますが、検証例が少ないが玉に瑕かもしれません。

上記の計算では 8 異性体を計算しています。実際には二異性体同時に計算させたので、所要時間は表の数値の約4倍かかっています。即ち B97X-D/6-31G\* full では、約3日要するのに対し、B3LYP energy では 16 時間ほどで計算が完了することになりますので、計算時間の短縮は極めて重要です。

Spartan による化学シフト計算の精度

プロトコルのB97X-D/6-31G\*による化学シフト予想は、「天然有機化合物の NMR スペクトル」としては、現在最も 再現性が高い手法と言えます。いくつか例を示します。

① Aleutianamine (Hamman ら、2019)<sup>3</sup>

この化合物の場合配座異性体が存在しないので、Spartan の NMR プロトコルを用いる必要は ありません。 論文では、mPW1PW91/6-311+G(d,p)モデルで、溶媒効果(PCM in DMSO)を考慮し て計算しています。Spartan では溶媒効果を考慮した化学シフトの計算は出来ませんが、下の表を見 る限りその必要はないことが判ります。基底関数のみの比較では、Spartan の 6-31G\*と比べ計算所 要時間は数十倍以上必要とする計算です。Spartanでは軽い計算を行っているにかかわらず、圧倒的 に精度が高いことが判ります。DP4 はどちらも isomer-1を 100%と予想しました。相対的な期待値で すので、計算精度に影響を受けにくい評価方法と言えるかもしれません。



論文での計算条件:mPW1PW91/6-311+G(d,p)

#### ② Wangらの経験補正(J. Org. Chem. 2020)<sup>4</sup>

Wang らは B3LYP/6-31G\*\*//B3LYP/6-31G\*\*モデルで得た化学シフトを複数の経験パラメータで補 正することで計算精度の著しい向上を実現したという結果を報告しています。考え方としては Spartan と同じです。100 を超える分子で比較して検証しています。ほとんどの量子モデリングパッケージに装 備された関数で計算可能であること、さほど大掛かりでない基底関数を使用しており、実用的と言えま す。補正方法は複雑ですが Supporting Information にエクセルのアプレットが登録されています。 Spartan の場合、炭素原子のタイプは自動で割り振られますが、このアプレットでは自分で入力する必 要があるようです。サンプルからいくつか選んで計算してみました。

Alstonlarsine A の場合、Spartan の方が、若干実験値をよく再現しています。なおこの計算では、 パソコンの都合上、Spartan'16 で計算したもので、Boltzmann 分布を wB97X-D/6-31G\*で求めてお り、本式ではありませんが、それでも結構よい数字が出る例かもしれません。



|                       | RMSD (ppm) | Max dev. (ppm) |
|-----------------------|------------|----------------|
| Wang's protocol (補正前) | 3.1        | 8.5            |
| (補正後)                 | 1.1        | 2.5            |
| Spartan               | 0.9        | 1.9            |

Xylachalasin A とその異性体は本文に登場した例です。本文に登場するだけあって、再現性は素 晴らしいです。ただし、計算精度が高いからと言って DP4 のスコアが 100%というものではありません。 むしろ、再現性の劣った Spartan の方が DP4 スコアは高くなっています。 DP4 の場合、比較する異性 体との差異が重要なためです。ここが DP4 の難しい点かもしれません。 真実は、異性体を単離するか、 合成して比較しなければ結論は出ないと思います。



|            | xylachalasin A | 6-epi-xylachalasin A | xylachalasin A | 6-epi-xylachalasin A |
|------------|----------------|----------------------|----------------|----------------------|
| MAE (ppm)  | 0.8            | 1.1                  | 1.6            | 2.4                  |
| RMSD (ppm) | 1.0            | 1.2                  | 2.1            | 3.2                  |
| DP4        | 96.8%          | 3.2%                 | 100%           | 0%                   |

#### ③ DP4+との比較

2015 年に発表された Sarotti らの DP4+も話題になります。DP4+の考え方は DP4 と同じです。ただ、計算 スキームを厳密化、さらに sp<sup>2</sup> 炭素やそれに結合する水素の化学シフトを別途補正を加えることで、DP4 の 感度の向上を実現したというものです。この方法では、B3LYP と mPW1PW91 の二つの汎関数が、基底関 数は 6-31G\*, 6-31G\*\*, 6-31+G\*\*, 6-311G\*, 6-311G\*\*, 6-311+G\*\*で、真空条件とPCM (CHCl<sub>3</sub>)が利用可 能です。公開されているエクセルに shielding tensor を入力すれば DP4+のスコアが表示されます。 Spartan の場合 Output データに記載されています。

この論文では、異性体間の比較精度の向上が議論されており、最終的な計算化学シフトが表面には出てきません。結合定数の実測値との差などもパラメータとして取り入れた J-DP4 も発表しています。計算精度の単純な比較はできませんが、scaled chemical shift であれば多少の比較が出来ました。

図は Tricholomalide A です。論文のサポーティングデータから汎関数に B3LYP を用いた場合の、 shielding tensor から scaled chemical shiftを算出し、それを基に RMSD 値を求めてみました。DP4+で用 いる化学シフトは、sp2 炭素を別途補正するので、実際の RMSD 値はもう少し小さいと思われます。

|             | 計算条件      | による RMSI | D値 (ppm) |       |      |
|-------------|-----------|----------|----------|-------|------|
| o,          |           | B3LYP    |          | mPW1F | PW91 |
| <u>}</u> ∼q |           | gas      | PCM      | gas   | PCM  |
|             | 6-31G*    | 2.0      | 1.5      | 2.0   | 1.6  |
|             | 6-31G**   | 2.4      | 1.9      | 2.2   | 1.7  |
|             | 6-31+G**  | 2.7      | 2.2      | 2.2   | 1.7  |
|             | 6-311G*   | 2.8      | 2.1      | 2.7   | 2.1  |
|             | 6-311G**  | 2.8      | 2.1      | 2.9   | 2.2  |
|             | 6-311+G** | 2.6      | 1.9      | 2.6   | 2.0  |

この表から、基底関数のレベルを高くしても、PCM により溶媒効果を付与しても必ずしも計算精度は向上 しないことがうかがえます。Spartan'20 によりのB97X-D full のプロトコルで計算したときの RMSD 値は 1.4 ppm ででした。Spartan で用いている基底関数は 6-31G\*で、上記表では最も軽いものです。

Hexacyclinol でも比較してみました。この化合物は長い間その構造が確定しなかったという、構造決定の 視点では難度の高い天然物です。

Spartan'20 により eB97X-D full のプロトコルで計算したときの RMSD 値は 1.9 ppm でした。

# 以下、Spartan による計算結果例を示します。

(3R,4S)-5-chloro-4-hydroxy-6-methoxymellein

| $\overset{10}{\text{MeO}}_{6} \overset{\text{CI}}{\underset{\text{Ha}}{4}(S)} \overset{\text{OH}}{\underset{\text{R}}{1}} \overset{9}{\overset{9}{1}} \overset{9}{\overset{9}{1} \overset{9}{\overset{9}{1}} \overset{9}{$ |            |                                  | v. (<br>ometry d<br>IR d<br>ergy d<br>ramete g | CDCl <sub>3</sub><br>wB97X-D/6-3<br>wB97X-D/6-3<br>wB97X-V/6-3<br>standard dev | 31G*<br>31G* + post s<br>311+G(2df,2p<br>viation: 2.306 | semiempirica<br>b)[6-311G*]<br>i ppm, freedo | I correction (<br>om: 11.38 | spartan'18) |                    |       |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------|------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|-----------------------------|-------------|--------------------|-------|------|------|------|------|
| он о                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ОН 0       |                                  |                                                |                                                                                | naka, K.; Ko                                            | shino, H.; Ha                                | ashimoto, M.,               | Tetrahedror | <b>2019</b> , 1304 | 70.   |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                  | position                                       | 1                                                                              | 8a                                                      | 8                                            | 7                           | 6           | 5                  | 4a    | 4    | 3    | 9    | OMe  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                  | exp.                                           | 167.3                                                                          | 100.6                                                   | 163.1                                        | 101.0                       | 161.5       | 113.2              | 136.5 | 65.8 | 79.8 | 18.1 | 56.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RMSD (ppm) | $ \Delta \delta _{ m max}$ (ppm) | DP4                                            |                                                                                |                                                         |                                              |                             |             |                    |       |      |      |      |      |
| (3R,4S)-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3        | 4.7                              | 86%                                            | 169.3                                                                          | 102.8                                                   | 164.8                                        | 100.1                       | 160.0       | 108.5              | 140.0 | 67.7 | 78.3 | 17.6 | 55.1 |
| (3R,4R)-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6        | 4.9                              | 14%                                            | 170.7                                                                          | 102.4                                                   | 164.8                                        | 100.0                       | 160.1       | 108.3              | 141.3 | 66.3 | 77.8 | 16.6 | 55.1 |

## cyclopericodiol

| $\begin{array}{c} \text{OH} \\ \text{HO} \\ \text{HO} \\ 10 \\ \text{MeO} \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$ | HO<br>HO<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |                                  |          |      |       | t semiempiri<br>2p)[6-311G*]<br>)6 ppm, freed<br>Coshino, H.; H | cal correctior<br>dom: 11.38<br>Hashimoto, N | n (spartan'18<br>1., Tetrahedra | )<br>on <b>2019</b> , 130 | 0470. |      |       |      |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|----------|------|-------|-----------------------------------------------------------------|----------------------------------------------|---------------------------------|---------------------------|-------|------|-------|------|--|
| experimental                                                                                                                 |                                                                      |                                  | position | C1   | C2    | C3                                                              | C4                                           | C5                              | C6                        | C7    | C8   | C9    | C10  |  |
|                                                                                                                              |                                                                      |                                  | exp.     | 19.0 | 132.3 | 123.4                                                           | 144.5                                        | 131.2                           | 72.5                      | 68.4  | 87.9 | 172.7 | 54.3 |  |
|                                                                                                                              | RMSD (ppm)                                                           | $ \Delta \delta _{ m max}$ (ppm) | DP4      |      |       |                                                                 |                                              |                                 |                           |       |      |       |      |  |
| 6R,7R,8S)-isomer                                                                                                             | 1.5                                                                  | 4.1                              | 100%     | 19.2 | 133.1 | 124.2                                                           | 144.3                                        | 132.8                           | 72.8                      | 69.7  | 88.6 | 176.8 | 54.4 |  |
| 6R,7S,8R)-isomer                                                                                                             | 3.5                                                                  | 7.1                              | 0%       | 19.1 | 132.0 | 124.1                                                           | 142.9                                        | 131.8                           | 79.6                      | 75.3  | 86.5 | 176.9 | 54.0 |  |
| 6R,7S,8S)-isomer                                                                                                             | 4.1                                                                  | 8.6                              | 0%       | 18.9 | 130.4 | 125.5                                                           | 140.9                                        | 133.8                           | 81.2                      | 71.8  | 82.9 | 178.1 | 53.9 |  |
| 6R,7R,8R)-isomer                                                                                                             | 2.5                                                                  | 4.5                              | 0%       | 18.9 | 131.5 | 125.0                                                           | 144.0                                        | 134.4                           | 75.4                      | 65.7  | 84.1 | 177.1 | 53.8 |  |



#### experimental

| enpermenten                 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     |
|-----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| position                    | 1    | 2    | 3    | 3a   | 4    | 5    | 6    | 7    | 7a   | 8    | 9    | 10   | 11   | 12   | 13   |     |
| seiricardine B              | 44.1 | 27.2 | 36.4 | 44.1 | 49.2 | 73.2 | 36.3 | 20.8 | 40.2 | 75.7 | 69.9 | 22.4 | 25.6 | 10.9 | 32.2 |     |
| seiricardine B by Evidente  | 43.9 | 27.1 | 36.3 | 44.0 | 49.2 | 73.2 | 36.2 | 20.8 | 40.2 | 75.7 | 69.8 | 22.2 | 25.6 | 10.8 | 32.3 |     |
| seiricardine C by Evidente  | 45.1 | 26.4 | 36.3 | 44.0 | 49.0 | 73.2 | 36.1 | 21.1 | 39.8 | 75.1 | 69.4 | 25.3 | 23.8 | 10.8 | 32.1 | e a |
| calculated                  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | -   |
| seiricardin B               | 43.3 | 28.4 | 36.6 | 43.8 | 46.5 | 72.5 | 34.9 | 21.5 | 39.0 | 76.0 | 70.2 | 23.5 | 26.1 | 12.5 | 31.4 | -   |
| C-8 isomer (seiricardine C) | 44.5 | 28.1 | 36.7 | 43.6 | 46.1 | 72.6 | 35.1 | 22.2 | 39.4 | 75.0 | 70.1 | 24.3 | 25.7 | 12.7 | 31.5 |     |
| seiricardine B by Evidente  | 47.2 | 25.2 | 36.6 | 43.9 | 46.1 | 77.3 | 32.4 | 20.9 | 47.8 | 79.0 | 66.1 | 27.5 | 29.4 | 11.9 | 31.7 |     |
| seiricardine C by Evidente  | 48.2 | 23.5 | 41.8 | 43.1 | 45.4 | 78.2 | 27.4 | 19.9 | 48.7 | 76.9 | 70.1 | 27.8 | 22.9 | 14.6 | 30.4 |     |

solv.

geometry NMR

parameters

energy

lit.

|                             | vs. seiricardin B (re            | vised)     |       | vs. Sericerdin B by              | Evidente   | vs seiricardin C by Evidente |                                  |            |       |
|-----------------------------|----------------------------------|------------|-------|----------------------------------|------------|------------------------------|----------------------------------|------------|-------|
|                             | $ \Delta \delta _{ m max}$ (ppm) | RMSD (ppm) | DP4   | $ \Delta \delta _{ m max}$ (ppm) | RMSD (ppm) | DP4                          | $ \Delta \delta _{ m max}$ (ppm) | RMSD (ppm) | DP4   |
| seiricardine B              | 2.3                              | 1.1        | 63.0% | 2.7                              | 1.1        | 67.1%                        | 2.5                              | 1.4        | 22.0% |
| C-8 isomer (seiricardine C) | 1.9                              | 1.2        | 37.0% | 3.1                              | 1.3        | 32.9%                        | 2.9                              | 1.3        | 78.0% |
| seiricardine B by Evidente  | 8.0                              | 3.5        | 0.0%  | 7.6                              | 3.5        | 0.0%                         | 8.0                              | 3.4        | 0.0%  |
| seiricardine C by Evidente  | 8.9                              | 4.5        | 0.0%  | 8.8                              | 4.5        | 0.0%                         | 8.9                              | 4.3        | 0.0%  |

#### seiricardine B epoxy deriv.

3a 7a 10 8 HIIII H

lit.

CDCI<sub>3</sub> solv. ωB97X-D/6-31G\* geometry NMR ωB97X-D/6-31G\* + post semiempirical correction (spartan'18) ωB97X-V/6-311+G(2df,2p)[6-311G\*] energy standard deviation: 2.306 ppm, freedom: 11.38 parameters M. Nishiyama, W. C. Tayone, H. Maeda, K. Tanaka, M. Hashimoto, Bull Chem. Soc. Jpn. 2020.93, 768.

|                |                                  |            |       | 1    | 2    | 3    | 3a   | 4    | 5    | 6    | 7    | 7a   | 8    | 9    | 10   | 11   | 12   | 13   |
|----------------|----------------------------------|------------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                |                                  |            | exp.  | 43.8 | 26.1 | 36.1 | 44.0 | 49.3 | 73.4 | 36.0 | 20.2 | 40.5 | 57.7 | 52.7 | 23.2 | 25.8 | 10.9 | 32.2 |
|                | $ \Delta\delta _{\rm max}$ (ppm) | RMSD (ppm) | DP4   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| (1S,8S)-isomer | 1.9                              | 0.9        | 98.5% | 43.9 | 27.4 | 36.3 | 43.7 | 47.9 | 72.6 | 35.6 | 20.4 | 40.0 | 55.8 | 52.1 | 23.0 | 26.6 | 12.5 | 31.7 |
| (1S,8R)-isomer | 3.4                              | 1.5        | 1.5%  | 41.4 | 27.2 | 36.8 | 43.6 | 45.9 | 72.8 | 34.8 | 21.6 | 39.0 | 55.6 | 51.0 | 23.5 | 25.7 | 12.5 | 31.4 |

#### seiricardine ketone

| Hun 1<br>10<br>10<br>10 | 5 MOH                            | solv.<br>geometry<br>NMR<br>energy<br>parameters<br>lit. | CDCl <sub>3</sub><br>ωB97X-D/6-31G*<br>ωB97X-D/6-31G* + post semiempirical correction (spartan'18)<br>ωB97X-V/6-311+G(2df,2p)[6-311G*]<br>standard deviation: 2.306 ppm, freedom: 11.38<br>M. Nishiyama, W. C. Tayone, H. Maeda, K. Tanaka, M. Hashimoto, Bull Chem. Soc. Jpn. <i>in press</i> |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
|-------------------------|----------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|
|                         |                                  |                                                          |                                                                                                                                                                                                                                                                                                | C-1  | C-2  | C-3  | C-3a | C-4  | C-5  | C-6  | C-7  | C-7a | C-8   | C-9  | C-11 | C-12 | C-13 |
|                         |                                  |                                                          | exp.                                                                                                                                                                                                                                                                                           | 51.3 | 25.1 | 36.5 | 44.7 | 48.8 | 73.3 | 35.5 | 20.7 | 41.6 | 211.9 | 31.9 | 23.9 | 10.9 | 31.9 |
|                         | $ \Delta \delta _{ m max}$ (ppm) | RMSD (ppm)                                               | DP4                                                                                                                                                                                                                                                                                            |      |      |      |      |      |      |      |      |      |       |      |      |      |      |
| seiricardine<br>ketone  | 1.0                              | 2.2                                                      | 99.1%                                                                                                                                                                                                                                                                                          | 50.1 | 26.5 | 36.9 | 44.4 | 46.6 | 72.6 | 34.1 | 21.3 | 41.1 | 211.5 | 31.9 | 24.1 | 12.5 | 31.1 |
| (1R)-isomer             | 1.9                              | 4.1                                                      | 0.9%                                                                                                                                                                                                                                                                                           | 53.7 | 26.4 | 35.9 | 44.4 | 47.5 | 72.5 | 35.4 | 23.1 | 40.9 | 207.8 | 28.0 | 24.3 | 12.2 | 31.4 |

| peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | solv.<br>geometry<br>NMR<br>energy<br>parameters<br>lit. | olv.       CDCl <sub>3</sub> eometry       wB97X-D/6-31G*         JMR       wB97X-D/6-31G* + post semiempirical correction (spartan'18)         nergy       wB97X-V/6-311+G(2df,2p)[6-311G*]         arameters       standard deviation: 2.306 ppm, freedom: 11.38         t.       newly calculated for this table<br>Inose, K.; Tanaka, K.; Yamada, T.; Koshino, H.; Hashimoto, M., J. Nat. Prod. 2019, 82, 911. |                                                                      |                                                        |                                 |             |        |      |      |       |          |      |       |      |       |      |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|-------------|--------|------|------|-------|----------|------|-------|------|-------|------|-------|
| peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1                                                                  | 0.2                                                    | 0.2                             | 0.4         | 0.5    | 0.6  | 0.7  | 0.0   | <u> </u> | 0.40 | 0.11  | 0.42 | 0.42  | 0.14 | 0.45  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                          | exp                                                                                                                                                                                                                                                                                                                                                                                                                | 19.9                                                                 | 20                                                     | 30.7                            | C-4<br>31 Q | 38.2   | 69.6 | 65.3 | 08.0  | 69.6     | 37.3 | 1/2 0 | 68.1 | 106 1 | 16.8 | 16.0  |
| Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | مر<br>المرا                                              | ) RMSD (ppm)                                             | DP4                                                                                                                                                                                                                                                                                                                                                                                                                | 13.5                                                                 | 20                                                     | 50.7                            | 51.5        | 50.2   | 03.0 | 00.0 | 30.3  | 03.0     | 57.5 | 142.0 | 00.1 | 100.1 | 10.0 | 10.5  |
| peribvsin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9                                                      | 1.3                                                      | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                             | 20.3                                                                 | 20.0                                                   | 30.0                            | 31.9        | 38.6   | 69.6 | 65.6 | 101.2 | 72.1     | 37.2 | 145.8 | 68.6 | 107.3 | 17.4 | 18.2  |
| 8R-peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.9                                                      | 4.8                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 28.5                                                                 | 22.0                                                   | 29.8                            | 31.3        | 39.8   | 65.1 | 65.4 | 104.9 | 77.7     | 47.2 | 144.8 | 70.7 | 110.0 | 17.8 | 20.8  |
| 9S-peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.0                                                      | 3.3                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 27.9                                                                 | 21.5                                                   | 30.2                            | 31.3        | 37.3   | 71.9 | 66.8 | 101.9 | 77.0     | 35.7 | 145.0 | 70.0 | 109.2 | 17.5 | 18.1  |
| 10R-peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.3                                                      | 4.5                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 25.8                                                                 | 25.8                                                   | 29.9                            | 40.2        | 37.7   | 75.1 | 65.9 | 102.1 | 74.3     | 45.5 | 145.6 | 69.2 | 107.5 | 16.8 | 12.1  |
| 6R7R8R-peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                      | 2.8                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 21.6                                                                 | 20.1                                                   | 28.9                            | 30.6        | 37.8   | 71.9 | 66.5 | 102.8 | 72.0     | 44.5 | 145.2 | 69.2 | 105.2 | 17.8 | 21.6  |
| 6R7R8R10R-peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.1                                                      | 3.5                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 25.7                                                                 | 25.9                                                   | 29.4                            | 38.0        | 38.5   | 72.1 | 66.3 | 101.8 | 75.6     | 38.7 | 144.9 | 69.6 | 108.8 | 15.6 | 13.9  |
| 6R7R9S-peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.4                                                      | 3.4                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 21.0                                                                 | 19.3                                                   | 28.7                            | 38.2        | 36.7   | 73.0 | 63.1 | 100.7 | 74.2     | 39.8 | 145.8 | 68.2 | 106.5 | 15.3 | 25.3  |
| 6R7R-peribysin O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6                                                      | 3.2                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 21.8                                                                 | 21.6                                                   | 29.7                            | 33.2        | 39.1   | 64.5 | 69.5 | 104.6 | 70.8     | 43.9 | 145.4 | 70.8 | 108.7 | 16.9 | 19.2  |
| $HO = \frac{15}{4} + \frac{12}{6} + \frac{12}{13} + \frac$ | solv.<br>geometry<br>NMR<br>energy<br>parameters<br>lit. | CDCI<br>∞B97<br>∞B97<br>∞B97<br>stand<br><i>Tetra</i>    | 3<br>X-D/6-310<br>X-D/6-310<br>X-V/6-311<br>ard devia<br>hedron <b>20</b>                                                                                                                                                                                                                                                                                                                                          | G*<br>G* + post s<br>I+G(2df,2p<br>tion: 2.306<br><b>(20</b> , 13119 | semiempir<br>b)[6-311G <sup>;</sup><br>ppm, free<br>7. | ical correc<br>']<br>:dom: 11.3 | tion (spart | an'18) |      |      |       |          |      |       |      |       |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                    | C-1                                                                  | C-2                                                    | C-3                             | C-4         | C-5    | C-6  | C-7  | C-8   | C-9      | C-10 | C-11  | C-12 | C-13  | C-14 | C-15  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                          | exp                                                                                                                                                                                                                                                                                                                                                                                                                | 46 1                                                                 | 57.0                                                   | 153.8                           | 67.9        | 49.6   | 46.0 | 54 6 | 44 7  | 77 9     | 46.5 | 55.8  | 29.1 | 25.0  | 24.1 | 107.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \Delta \delta _{max}$ (ppm)                            | DP4                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                                        |                                 |             |        | ••   |      |       |          |      |       |      |       |      |       |
| 4R7R9R11S-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>2.8</b>                                               | 1.0                                                      | 99.6%                                                                                                                                                                                                                                                                                                                                                                                                              | 46.3                                                                 | 55.7                                                   | 153.5                           | 67.9        | 50.2   | 44.7 | 55.4 | 44.1  | 78.7     | 45.7 | 55.9  | 29.4 | 25.7  | 25.2 | 110.6 |
| 4R7S9R11R-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0                                                      | 4.4                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 40.7                                                                 | 54.3                                                   | 152.5                           | 68.6        | 48.1   | 44.3 | 50.6 | 48.8  | 69.9     | 51.8 | 49.7  | 22.4 | 19.5  | 22.8 | 110.4 |
| 4R7R9S11S-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7                                                      | 1.9                                                      | 0.4%                                                                                                                                                                                                                                                                                                                                                                                                               | 45.2                                                                 | 55.7                                                   | 153.0                           | 68.1        | 50.3   | 44.8 | 51.9 | 44.1  | 74.2     | 45.0 | 52.5  | 28.4 | 24.9  | 25.0 | 111.2 |
| 4R7S9S11R-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.9                                                      | 3.4                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 40.9                                                                 | 55.0                                                   | 152.8                           | 68.5        | 48.2   | 44.7 | 53.8 | 48.3  | 74.5     | 52.3 | 52.8  | 23.2 | 20.1  | 23.0 | 110.2 |
| 4S7R9R11S-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9                                                      | 2.7                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 42.2                                                                 | 54.9                                                   | 154.4                           | 68.1        | 43.7   | 44.2 | 54.2 | 45.0  | 77.2     | 46.5 | 55.0  | 28.9 | 25.8  | 26.1 | 114.7 |
| 4S7S9R11R-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7                                                      | 5.0                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 39.2                                                                 | 54.6                                                   | 155.0                           | 68.7        | 41.9   | 43.7 | 50.7 | 49.5  | 70.3     | 51.9 | 49.9  | 24.1 | 20.7  | 23.7 | 115.0 |
| 4S7R9S11S-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                      | 3.3                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 39.0                                                                 | 53.7                                                   | 159.3                           | 67.3        | 44.0   | 44.4 | 55.2 | 45.9  | 74.5     | 47.1 | 56.0  | 28.3 | 26.0  | 26.3 | 112.3 |
| 4S7S9S11R-isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.6                                                      | 4.2                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                               | 39.4                                                                 | 55.4                                                   | 155.3                           | 68.7        | 42.0   | 44.1 | 53.9 | 49.1  | 74.9     | 52.2 | 53.0  | 25.1 | 21.3  | 23.9 | 114.9 |

| isoborneol |                                  |            | solv.<br>geomei<br>NMR<br>energy<br>garame<br>lit. | try o | CDCl <sub>3</sub><br>wB97X-D/6-3<br>wB97X-D/6-3<br>wB97X-V/6-3<br>standard dev<br>newly calcula<br>experimental | 31G*<br>31G* + pos<br>311+G(2df,<br>riation: 2.30<br>ated for this<br>data: :http | t semiemp<br>2p)[6-3110<br>06 ppm, fre<br>s table<br>ss://sdbs.dt | irical correc<br>5*]<br>bedom: 11.:<br>b.aist.go.jp/ | ction (spari<br>38<br>′sdbs/cgi-b | tan'18)<br>in/cre_inde | ex.cgi |      |      |
|------------|----------------------------------|------------|----------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|------------------------|--------|------|------|
|            |                                  |            |                                                    | C-1   | C-2                                                                                                             | C-3                                                                               | C-4                                                               | C-5                                                  | C-6                               | C-7                    | C-8    | C-9  | C-10 |
|            |                                  |            | exp.                                               | 49.0  | 79.8                                                                                                            | 40.5                                                                              | 45.1                                                              | 27.3                                                 | 34.0                              | 11.3                   | 46.3   | 20.5 | 20.2 |
|            | $ \Delta \delta _{ m max}$ (ppm) | RMSD (ppm) | DP4                                                |       |                                                                                                                 |                                                                                   |                                                                   |                                                      |                                   |                        |        |      |      |
| isoborneol | 1.5                              | 0.7        | 100.0%                                             | 49.5  | 80.2                                                                                                            | 39.4                                                                              | 44.9                                                              | 28.2                                                 | 34.2                              | 12.8                   | 46.6   | 21.2 | 20.4 |
| horneol    | 7.0                              | 0.0        | 0.00/                                              | 50 4  | 70.0                                                                                                            | 00.0                                                                              | 44.0                                                              | 00.0                                                 | 00.0                              | 45.0                   | 47.0   | 00.0 | 40.4 |



 solv.
 CDCl<sub>3</sub>

 geometry
 wB97X-D/6-31G\*

 NMR
 wB97X-D/6-31G\* + post semiempirical correction (spartan'18)

 energy
 wB97X-V/6-311+G(2df,2p)[6-311G\*]

 parameters
 standard deviation: 2.306 ppm, freedom: 11.38

 lit.
 M. Nishiyama, A. Tonouchi, H. Maeda, H. M.Hashimoto, Chirality 2020, 32, 17-31.

|                     |       |       |       | C-1  | C-2  | C-3  | C-4  | C-5  | C-6  | C-7  | C-8   | C-0   | C-10 | C-11 | C-12 | C-13 | C-14 | C-15 | C-16 | C-17 | C-18 | C-10 | C-28 | C-20 | C-30 |
|---------------------|-------|-------|-------|------|------|------|------|------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 11 (CDCI2)          |       |       | ovp   | 20.9 | 22 2 | 70 5 | 26.6 | 45.4 | 17.0 | 25.4 | 125 4 | 124.0 | 26.0 | 20.9 | 25.2 | 40.0 | 50.1 | 21.4 | 20.4 | 0-11 | 10.6 | 10.0 | 21.0 | 27.2 | 27.5 |
| T (CDCIS)           | 13.61 | DMCD  | exp   | 30.0 | 23.3 | 10.5 | 30.0 | 45.4 | 17.9 | 20.4 | 155.4 | 134.0 | 30.0 | 20.0 | 20.Z | 49.0 | 50.1 | 31.4 | 39.4 | 05.9 | 10.0 | 10.0 | 21.9 | 21.5 | 21.5 |
|                     | (ppm) | (nnm) | DP4   |      |      |      |      |      |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |
| model I             | 3.5   | 1.3   | 80.1% | 31.2 | 23.2 | 79.5 | 36.5 | 44.9 | 19.6 | 26.6 | 138.9 | 135.7 | 37.5 | 22.5 | 26.1 | 50.1 | 51.0 | 32.2 | 39.9 | 84.5 | 19.6 | 20.3 | 22.2 | 28.9 | 27.8 |
| 3-isomer            | 4.0   | 2.0   | 0.5%  | 34.5 | 23.6 | 81.0 | 37.3 | 49.2 | 19.7 | 26.6 | 138.9 | 135.6 | 37.4 | 22.7 | 26.1 | 50.1 | 50.9 | 32.3 | 39.9 | 84.5 | 19.7 | 20.8 | 17.9 | 28.3 | 27.6 |
| 5-isomer            | 10.3  | 3.6   | 0.0%  | 29.1 | 23.4 | 77.7 | 36.9 | 49.3 | 24.7 | 28.0 | 139.5 | 134.1 | 38.5 | 23.4 | 26.5 | 49.5 | 51.6 | 31.5 | 39.7 | 84.7 | 19.6 | 27.6 | 32.2 | 27.3 | 28.0 |
| 13-isomer           | 11.7  | 3.5   | 0.0%  | 30.2 | 23.2 | 79.3 | 36.4 | 45.3 | 20.2 | 29.6 | 137.1 | 134.5 | 38.2 | 23.0 | 30.3 | 49.1 | 51.6 | 38.1 | 39.0 | 86.9 | 30.3 | 20.0 | 22.4 | 28.9 | 23.4 |
| 14-isomer           | 10.9  | 3.2   | 0.0%  | 30.8 | 22.9 | 78.9 | 36.6 | 46.2 | 20.1 | 29.9 | 136.0 | 144.9 | 39.0 | 24.7 | 30.1 | 48.3 | 51.0 | 31.4 | 40.3 | 87.7 | 22.6 | 20.5 | 22.1 | 28.8 | 23.9 |
| 17-isomer           | 4.2   | 1.7   | 1.6%  | 31.1 | 23.3 | 79.2 | 36.5 | 44.9 | 19.5 | 26.5 | 137.8 | 136.3 | 37.5 | 23.1 | 29.4 | 51.1 | 49.4 | 31.4 | 37.9 | 84.3 | 20.9 | 19.9 | 22.2 | 28.9 | 25.0 |
| 3,5-isomer          | 13.7  | 3.7   | 0.0%  | 31.0 | 24.3 | 80.7 | 37.3 | 44.1 | 19.1 | 24.7 | 140.2 | 132.3 | 36.8 | 24.5 | 26.3 | 50.3 | 51.3 | 32.0 | 39.9 | 84.4 | 19.4 | 32.5 | 28.4 | 23.8 | 28.0 |
| 3,13-isomer         | 6.6   | 2.8   | 0.0%  | 33.5 | 23.6 | 80.9 | 37.0 | 50.1 | 20.2 | 29.8 | 137.4 | 134.0 | 38.1 | 23.0 | 30.4 | 49.1 | 51.5 | 38.0 | 38.9 | 87.1 | 17.1 | 20.1 | 18.4 | 28.4 | 23.5 |
| 3,14-isomer         | 9.6   | 3.4   | 0.0%  | 34.0 | 23.6 | 80.7 | 37.3 | 50.6 | 20.3 | 29.9 | 135.7 | 143.6 | 38.9 | 25.3 | 29.3 | 47.8 | 50.7 | 31.0 | 40.3 | 87.8 | 22.5 | 20.8 | 18.5 | 28.4 | 24.9 |
| 3,17-isomer         | 4.1   | 2.2   | 0.0%  | 34.5 | 23.6 | 80.7 | 37.3 | 49.4 | 19.7 | 26.5 | 137.7 | 136.0 | 37.4 | 23.2 | 29.3 | 50.9 | 49.3 | 31.6 | 37.7 | 84.4 | 20.9 | 20.4 | 18.2 | 28.3 | 25.0 |
| 5,13-isomer         | 13.7  | 5.4   | 0.0%  | 34.1 | 25.3 | 81.7 | 38.5 | 47.7 | 20.1 | 25.5 | 139.6 | 130.6 | 37.4 | 24.1 | 30.2 | 49.3 | 51.7 | 38.2 | 39.2 | 87.0 | 30.2 | 32.5 | 28.2 | 17.2 | 23.3 |
| 5,14-isomer         | 14.6  | 4.8   | 0.0%  | 34.0 | 24.5 | 81.5 | 38.6 | 47.3 | 20.4 | 26.1 | 138.1 | 138.7 | 38.4 | 26.4 | 29.5 | 47.8 | 50.8 | 31.4 | 40.6 | 88.2 | 22.8 | 33.4 | 29.5 | 18.3 | 24.7 |
| 5,17-isomer         | 13.4  | 4.4   | 0.0%  | 34.5 | 25.0 | 81.0 | 38.4 | 48.6 | 19.2 | 24.7 | 139.4 | 132.3 | 36.8 | 24.9 | 29.7 | 51.2 | 49.7 | 31.2 | 37.7 | 84.3 | 20.7 | 32.2 | 28.1 | 17.5 | 25.2 |
| 13,14-isomer        | 6.9   | 2.6   | 0.0%  | 30.8 | 23.3 | 79.3 | 36.6 | 45.3 | 20.1 | 27.8 | 136.8 | 135.5 | 37.7 | 24.3 | 29.4 | 50.5 | 49.5 | 30.6 | 37.1 | 84.5 | 20.8 | 21.2 | 28.8 | 22.1 | 25.7 |
| 13,17-isomer        | 7.0   | 3.0   | 0.0%  | 30.2 | 23.2 | 79.3 | 36.4 | 45.3 | 20.2 | 29.6 | 137.1 | 134.5 | 38.2 | 23.0 | 30.3 | 49.1 | 51.6 | 38.1 | 39.0 | 86.9 | 17.1 | 20.0 | 28.9 | 22.4 | 23.4 |
| 14,17-isomer        | 6.9   | 3.4   | 0.0%  | 31.2 | 23.2 | 79.2 | 36.5 | 45.5 | 20.0 | 28.1 | 133.9 | 140.6 | 38.7 | 23.7 | 30.0 | 49.7 | 50.0 | 31.0 | 40.4 | 85.3 | 25.2 | 20.6 | 28.8 | 22.1 | 21.9 |
| 3,5,13-isomer       | 13.7  | 4.2   | 0.0%  | 30.0 | 24.3 | 81.3 | 37.3 | 43.2 | 20.0 | 25.5 | 139.3 | 131.0 | 37.3 | 24.1 | 30.3 | 49.1 | 51.7 | 38.2 | 39.1 | 87.0 | 17.1 | 32.5 | 28.1 | 23.7 | 23.3 |
| 3,5,14-isomer       | 12.8  | 4.8   | 0.0%  | 30.9 | 24.3 | 78.4 | 37.0 | 47.2 | 23.4 | 26.9 | 135.3 | 136.5 | 38.6 | 26.8 | 30.7 | 48.9 | 51.3 | 32.1 | 39.8 | 87.3 | 22.9 | 31.6 | 27.8 | 23.3 | 39.8 |
| 3,5,17-isomer       | 13.5  | 3.8   | 0.0%  | 30.8 | 24.3 | 80.6 | 37.2 | 43.9 | 19.1 | 24.7 | 139.3 | 132.8 | 36.8 | 25.1 | 29.7 | 51.3 | 49.7 | 31.2 | 37.8 | 84.3 | 20.7 | 32.3 | 28.4 | 23.6 | 25.1 |
| 3,13,14-isomer      | 9.2   | 3.2   | 0.0%  | 34.2 | 23.7 | 80.7 | 37.3 | 50.0 | 20.1 | 28.0 | 137.1 | 135.1 | 37.6 | 24.2 | 29.3 | 50.4 | 49.4 | 30.6 | 37.1 | 84.5 | 20.7 | 21.3 | 28.3 | 18.1 | 25.7 |
| 3,13-17-isomer      | 6.6   | 3.6   | 0.0%  | 34.3 | 23.7 | 80.5 | 37.3 | 50.2 | 20.5 | 30.1 | 138.8 | 139.9 | 38.5 | 24.6 | 31.8 | 48.0 | 50.2 | 36.2 | 38.9 | 88.3 | 24.4 | 22.1 | 18.3 | 28.3 | 23.4 |
| 3,14,17-isomer      | 7.5   | 2.9   | 0.0%  | 36.0 | 23.9 | 81.0 | 37.4 | 48.5 | 20.2 | 26.7 | 137.5 | 134.8 | 37.5 | 21.5 | 29.9 | 49.1 | 51.2 | 38.9 | 39.2 | 86.5 | 16.8 | 22.5 | 17.8 | 28.2 | 24.4 |
| 5,13,14-isomer      | 14.6  | 5.1   | 0.0%  | 34.0 | 24.5 | 81.5 | 38.6 | 47.3 | 20.4 | 26.1 | 138.1 | 138.8 | 38.4 | 26.3 | 29.5 | 47.8 | 50.7 | 31.4 | 40.5 | 88.3 | 22.7 | 33.4 | 29.6 | 18.3 | 19.2 |
| 5,13,17-isomer      | 12.8  | 4.8   | 0.0%  | 34.2 | 24.9 | 80.6 | 38.2 | 48.2 | 19.1 | 24.8 | 136.8 | 140.7 | 37.5 | 25.4 | 28.7 | 48.2 | 50.4 | 32.2 | 40.6 | 87.1 | 28.7 | 31.6 | 28.1 | 18.5 | 24.4 |
| 5,14,17-isomer      | 14.8  | 4.6   | 0.0%  | 35.1 | 24.9 | 80.9 | 38.3 | 48.6 | 19.5 | 25.3 | 138.6 | 131.4 | 36.6 | 22.9 | 30.3 | 49.1 | 51.7 | 36.4 | 39.3 | 86.7 | 16.8 | 33.6 | 27.8 | 18.0 | 24.4 |
| 13,14,17-isomer     | 2.9   | 1.4   | 17.7% | 30.9 | 23.3 | 79.4 | 36.7 | 45.4 | 20.2 | 28.1 | 138.0 | 135.0 | 37.8 | 23.7 | 26.5 | 49.7 | 51.2 | 31.3 | 39.8 | 84.6 | 19.5 | 21.3 | 22.2 | 28.9 | 28.3 |
| 3,5,13,14-isomer    | 14.8  | 4.0   | 0.0%  | 29.9 | 24.5 | 81.3 | 37.4 | 43.8 | 19.8 | 25.0 | 138.6 | 132.3 | 37.1 | 25.5 | 29.4 | 50.3 | 49.8 | 30.5 | 37.3 | 84.5 | 21.5 | 33.6 | 28.2 | 24.0 | 25.7 |
| 3,5,13,17-isomer    | 12.8  | 4.0   | 0.0%  | 30.9 | 24.3 | 79.9 | 37.1 | 43.6 | 18.9 | 24.5 | 136.7 | 141.4 | 37.5 | 25.7 | 29.1 | 48.2 | 50.5 | 32.3 | 40.4 | 87.2 | 22.3 | 31.6 | 28.3 | 24.3 | 24.4 |
| 3,5,14,17-isomer    | 14.0  | 3.9   | 0.0%  | 31.9 | 24.4 | 80.3 | 37.2 | 44.8 | 19.8 | 25.8 | 138.4 | 132.1 | 37.0 | 23.3 | 30.3 | 49.1 | 51.6 | 36.5 | 39.1 | 86.6 | 16.9 | 32.8 | 28.1 | 24.5 | 24.3 |
| 3,13,14,17-isomer   | 4.7   | 2.1   | 0.1%  | 34.3 | 23.7 | 80.9 | 37.3 | 50.1 | 20.2 | 28.1 | 138.2 | 134.6 | 37.6 | 23.7 | 26.4 | 49.6 | 51.2 | 31.3 | 39.7 | 84.6 | 19.5 | 21.4 | 18.1 | 28.4 | 28.2 |
| 5,13,14,17-isomer   | 14.7  | 4.7   | 0.0%  | 34.3 | 25.4 | 81.6 | 38.6 | 47.9 | 19.9 | 25.2 | 140.0 | 131.2 | 37.1 | 24.9 | 21.6 | 51.5 | 51.4 | 31.1 | 38.6 | 84.5 | 20.2 | 33.5 | 28.7 | 17.3 | 31.1 |
| 3,5,13,14,17-isomer | 14.8  | 4.0   | 0.0%  | 30.0 | 24.5 | 81.2 | 37.3 | 43.8 | 19.8 | 25.3 | 140.0 | 131.3 | 37.0 | 25.0 | 26.6 | 49.7 | 51.7 | 31.1 | 39.7 | 84.5 | 20.1 | 33.6 | 28.4 | 24.0 | 28.5 |

- 1 D. Flaig, M. Maurer, M. Hanni, K. Braunger, L. Kick, M. Thubauville, C. Ochsenfeld, Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels. *J. Chem. Theory Comput.* **2014**; *10*: 572-578.
- 2 W. J. Hehre, P. Kuunzinger, B. Deppmeier, A. Driessen, N. Uchida, M. Hashimoto, E. Fukushi, Y. Takata, An Efficient Protocol for Accurately Calculating <sup>13</sup>C Chemical Shifts of Conformationally Flexible Natural Products: Scope, Assessment and Limitations. *J. Nat. Prod.* 2019; 82: 2299-2306.
- 3 Y. Zou, X. Wang, J. Sims, B. Wang, P. Pandey, C. L. Welsh, R. P. Stone, M. A. Avery, R. J. Doerksen, D. Ferreira, C. Anklin, F. A. Valeriote, M. Kelly, M. T. Hamann, Computationally Assisted Discovery and Assignment of a Highly Strained and PANC-1 Selective Alkaloid from Alaska's Deep Ocean. *Journal of the American Chemical Society* 2019; 141: 4338-4344.
- 4 J. Li, J.-K. Liu, W.-X. Wang, GIAO <sup>13</sup>C NMR Calculation with Sorted Training Sets Improves Accuracy and Reliability for Structural Assignation. *The Journal of Organic Chemistry* **2020**: